
TEC
H

 LIB
R

A
R

Y KAFB, "
I 

h
 

*
 

W
 

c 0
 

2
 

J
 

0
 

2
 
I
 

0
 

w c cn 2
 

a I
 

a a 
908~-a NI 

VSVN 

8 z 0
 

U
 z 0

 

x W
 

cn 
2 a" 0
 

&
 

4
 

td V
 

H
 z 0

 
F: 4
 
5
 

2 > W
 

4
 

V
 

W
 

&
 

E 0
 
b
 3 4

 

E z H E 0
 

0
 

a 6 
0

 
2 cn 8 

c
 

c
3
 

a 

z
 
0
 



TECH LIBRARY KAFB, NM 

IIllill11111lllllllllllHllllllllllll1111Ill 
0130522 

NASA TN D-3806 

APPLICATION O F  RICHARDSON'S EXTRAPOLATION TO NUMERICAL 

EVALUATION OF SONIC-BOOM INTEGRALS 

By William B. Igoe 

Langley R e s e a r c h  Center  
Langley Station, Hampton, Va. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTI price $3.00 



APPLICATION OF RICHARDSON'S EX"'0IATION TO NUMERICAL 


EVALUATION OF SONIC-BOOM 1NTM;RAIS 

By William B. Igoe

Langley Research Center 


SUMMARY 


An application of Richardson's extrapolation to the numerical evaluation of 

the sonic-boom integrals occurring in the theory of Whitham (Communications on 

Pure and Applied Mathematics, August 1952) has been considered. Equations have 

been developed for evaluating the sonic-boom integrals, by using second deriva

tives which are obtained from the central difference formulas of finite differ

ence techniques. It has been shown by error analysis that these equations have 

an order of error proportional to the square of the solution point interval 

spacing for the far-field sonic-boom integral, and to the three-halves power of 

the interval spacing for the near-field sonic-boom integral. Extrapolation of 

the numerical results to zero interval spacing on the basis of the predicted 

order of error is demonstrated, and some numerical examples confirm the essen

tial validity of this procedure. Some of the numerical results, however, show 

that the extrapolation technique must be used with caution. 


INTRODUCTION 


The purpose of this report is to present an application of Richardson's 

extrapolation as a method of improving the accuracy of a numerical evaluation of 

the sonic-boom integrals. These integrals are encountered in using the theory

of reference 1 for the calculation of the sonic-boom overpressure fields due to 

the flow pattern of a supersonic aircraft or projectile. In general, numerical 

methods must be used in the calculation since the integrals are a function of 

the effective area distribution which is usually known only numerically. The 

lift as well as the volume contribution to the overpressure field of an aircraft 

configuration may be included in the sonic-boom theory through the use of an 

equivalent body concept. Supersonic-area-rule cuts may be used to determine the 

contribution of the aircraft volume to the effective area distribution of the 

equivalent body; thus, the effect of Mach number on these contributions is 

introduced. These extensions of the basic theory of reference 1,as applied to 

the calculation of sonic-boom overpressure fields, have been summarized in 

reference 2. 


The procedure referred to as Richardson's extrapolation was first presented
in reference 3, and an expanded version was later presented in reference 4. As 
stated in reference 4, the philosophy of this process is to reverse the order of 



passing to the limit in the solution of a problem. In an analytical solution 

involving an application of the methods of the calculus, the passage to the 

limit is taken at the earliest possible stage in the formulation of the problem.
In a numerical solution, however, this procedure is unworkable, and the solution 
must therefore be obtained in finite differences. In applying Richardson's 
extrapolation, the approach to the limit is deferred until after the problem has 
been solved for a finite number of discrete increments. If the variation of the 
solution error with increment size is known, the results may then be extrapo
lated to what they would be for vanishingly small increments. In references 3 
and 4, the theory of the deferred approach to the limit is applied only to prob
lems which are solved by central difference techniques, resulting in what is 
called "h2 extrapolation. '' However, the philosophy itself is not necessarily 
restricted to problems of this class. It is the general theory of the deferred 
approach to the limit which is applied in this report, and the particular form 
of the extrapolation used is derived from an analysis of the discretization 
error. 

A number of numerical methods of evaluating the sonic-boom integrals are 
available. (See, for example, refs. 2 and 5 to 7.) The method of reference 2 
involves the use of the second derivatives of the effective area distribution of 
an equivalent body in a straightforward application of the theory of reference 1 
for both the near- and far-field solutions. Reference 5 presents a method of 
evaluating the near-field overpressure integral involving only first derivatives. 
The far-field overpressure may be readily evaluated once the near-field solution 
is obtained. References 6 and 7present methods of evaluating the far-field 
overpressure integrals where again only first derivatives are required. The 
numerical procedure for evaluation of the sonic-boom integrals which is utilized 
in this report is essentially the same as that of reference 2, the main differ
ence being in the method by which the derivatives of the equivalent body effec
tive area distribution are obtained. For Chis step, the standard central dif
ference formulas are used. This method was chosen because it appeared most 
readily amenable to an error analysis and to the subsequent application of 
Richardson's extrapolation. 

In the following sections of this report, after a description of the symbol 

notation which is used, the near- and far-field overpressure expressions are 

introduced from reference 1 to show the significance of the sonic-boom inte

grals. Next the three-point formulas of the standard central difference equa

tions are used to obtain the required second derivatives of the equivalent body 

effective area distribution. The second derivatives are then integrated twice 

to obtain a check of the original area distribution. Following this the second 

derivatives are used to obtain expressions for the sonic-boom integrals in a 

form which is suitable for an error analysis. The presentation of the foregoing

material is essentially a preface to the analysis of the discretization error of 

the given sonic-boom integral solution and the subsequent application of 

Richardson's extrapolation. The error is obtained as a function of the solution 

interval spacing and only the lowest order terms are retained. Finally some 

numerical examples are presented to show a possible application of the extrapo

lation technique. 
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A l l  length dimensions are for a body of unit length. 

A ( x )  effective cross-sectional area of equivalent body which combines 
effects of volume and iift, nondimensionalized with respect to 
square of equivalent body length 

a3 coefficient in jth order term of polynomial used to represent A ( x )  

h width of interval in x between regularly spaced body stations 

i integer designating ith derivative 


J integer representing maximum order of polynomial 


integer representing the order of polynomial terms 


K reflection factor (equals unity if pressure wave does not contact 
reflective surface) 

k arbitrary exponent 


M EZach number 


integers designating body stations starting from zero at nose 


integer representing maximum station number at base or rear extremity

of equivalent body 


P reference pressure for uniform atmosphere 


Q quantity representing either F or I 


Rl(X) , q X )  radii, nondimensionalized with respect to equivalent body length 


r perpendicular distance from flight path of equivalent body to field 

point at which the sonic-boom overpressure is evaluated, nondimen

sionalized with respect to equivalent body length 
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longitudinal distance from nose along equivalent body axis, positive 

downstream, nondimensionalized with respect to equivalent body

length 


xO value of x for which integral I(x) is maximum 

Y ratio of specific heats, 1.4 for air 


incremental pressure (sonic-boom overpressure) due to flow field of 

equivalent body at supersonic speeds 


s = x - x ,  


Subscripts: 


check first or second integral of numerical approximation of A"(x) 


error difference between exact value and numerical approximation of a 

function 


exact value of function evaluated analytically 


extrap value of function obtained by Richardson's extrapolation 


far field asymptotic value of 4 

m,n,N function evaluated at station m,n,N 


max maximum positive value of a function 


Primes, Roman numerals, and (i) are used as superscripts to indicate deriv

atives with respect to x. 


SONIC-BOOM WEEPRESSURE EQUATIONS 

At a sufficiently large distance from the body the incremental pressure at 

a specific point in the flow field of a projectile at supersonic speeds is 

given, to a first approximation, by the theory of reference 1 as 


4 
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where 


The configuration of the shock waves in the supersonic flow field and the magni
tude of the pressure increments across the shock waves are determined from area 
balancing re&irements which must be applied to the F(x) function. A complete 
description of the influence of the F(x) function with regard to the strength
and location of the shock waves is given in reference 1. A review and applica
tion of this theory is given in reference 8,and a numerical method of accom

plishing the area balancing technique as applied to the F(x) function to 

obtain pressure signatures is presented in reference 9. Under far-field condi
tions, reference P shows that the pressure increment due to the front shock 
asymptotically approaches the value 

where I(xo) is the maximum positive value of the integral 

The functions F(x) and I(x) represent the sonic-boom integrals which are to 
be evaluated. It can be seen from equations (1)and (2) that when the values of 
the functions F(x) and I(x) are known, the incremental pressures in the flow 
field may then be determined, both under asymptotic and nonasymptotic condi
tions. As mentioned previously, reference 2 has presented a numerical method 
(involving second derivatives) for evaluating the functions F(x) and I(x).
An alternative method for evaluating these functions is developed in a form con
sidered suitable f o r  the subsequent analysis of the discretization error. 

NUMERICAL SECOND DERIVATIVX OF AREA DISTRIBUTION 

The second derivatives of the effective area distribution can be approxi

mated numerically by using the three-point formula of the standard central dif

ference equations 


1
+-2In 
= g(pn-1- 2A, + h+l) ( 3 )  
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which is equivalent to taking the second derivative of a parabolic arc which is 
passed through three adjacent points. This expression is used to represent the 
value of the second derivative over an interval h in width centered about the 
nth station or in the range of x 

At the nose, the second derivative is obtained by 


(0 Ix 5 2 )  (4)2 


Equation (4)is strictly applicable only to configurations with pointed noses. 

However, this is not necessarily a restrictive condition to the numerical method 

developed herein since the theory of reference 1 to which it is applied is also 

similarly restricted. At the base of the body, the second derivative in the 

interval at the base is assumed equal to the second derivative in the interval 

immediately preceding it 


((1.0 - g) s x 5 1.0) ( 5 )  

where the normalized configuration length is unity. This assumption at the base 
is equivalent to applying the forward difference formula of finite difference 
techniques at the base instead of the central difference formula which is 
applied elsewhere on the configuration. A check of the A"(x)  approximation is 
obtained by integrating twice to obtain A(x)check. The first integral for the 
check function is 


which may be integrated with the approximations of equations (3), (4),  and (5)
to yield 

The derivation of equation (8)is shown in detail since the same method is used 
in the summations for A(x)check, F(x), and ~(x). TIXLS method yields expres
sions in a form which are well suited to the analysis for the discretization 
error. Equation (6)may be rewritten 
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The second derivative approximations of equations (3) ,  (4) ,  and ( 5 )  are used to 
obtain 

The intervals over which the integrals are taken are changed as follows 

Integration and rearrangement of terms yields the following form: 


( 8 )  
The second integral 


A(x) check = kxA'(E) check dE ( 9 )  

yields 
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and 


(k - $)h 5 x 5 (m + $)h) (11) 

Values at station o r  half-station points are obtained by letting x = m h  or 
x = (m + -21)h, respectively, in equation (11). The foregoing check is performed 

to determine how closely the area distribution for which the numerical solution 

is obtained matches the area distribution for which the solution is desired. 


NUMERICAL INTEGRATIONFOR F(X) AND r(x) 

The integral for the function F(x)  for area distributions possessing con
tinuous first derivatives is 

Now using the same stepwise procedure in equation (1 ) as was used for the area 
check function 

F ( x )  k: -1 6 
r[ 

and 


To evaluate F(x) at a station point, let x = mh in equation 

8 




and at a Wf-station point, let x = (m + $)h 

The second integration f o r  the function I(x) is defined as follows 

The integration for I(x) is accomplished with the same stepwise procedure as 
before 

2 11I(x) - AOX3/2 
35r 

and 


Equation (19)for I(x) may be evaluated at a station point by substituting

x = m h  


and at a half-station point by substituting x = (m + -:>h 

m 1 


+ 1 ( A i  - Ai-l)(m - n + 1)I 


2 
 n=l 




AVb) 

- - 

ERROR ANALYSIS 

Among the important sources of error in the numerical solution is the dis
cretization error due to the finite-size increments that are used to obtain 
solutions. This error occurs because the second derivative of the effective 

area distribution is approximated numerically and is assumed constant over a 

discrete station interval. At any given station point, the second derivative 

error is of order but in the kh/2 interval about the station point, for 

which the second derivative is considered constant, the order of error degrades 

from order h2 of the central difference formulas to order h of the forward 

difference formulas. The object of the error analysis is to find the lowest 

order of h on which the discretization error of the F and I functions 

depends. All higher orders of h are considered negligible in Richardson's 

extrapolation as h is made vanishingly small. 


The order of error of the second derivative may be shown as follows. The 

station areas An-1, An, and are expanded in a Taylor's series centered 


at the arbitraly point x which lies within the interval 5 - 2 5 x 5 % + -h 
2 - 2' 

Letting 6 = x - q, there is obtained 

Iv 

+ (h + 6)4 A  

4!
(X)-(h+6) 5 - + .  . .  

5 :  

A, = A(x) - ~A'(x)+ 62 A"(x) ,3 A"'(x) + ,4 AN(x) - 6  5 -+ . . .Av(X) 

2. 3 :  4: 5 :  

and 


An+1 = A(x) + (h - 6)A1(x) + (h - 6)2 a+ (h - 6)3 A"' (x) 
2! 3 :  

+ 	(h - 6) + (h - 6 ) 5  + . . .  
4! 5 !  

The above expressions are combined in the central difference formula (eq. ( 3 ) )
to obtain 
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+ (h - 6131 + 
4! 

kh + S)4 - 2S4 + (h - 6 ) q  + . . . ~(d)) 

which may be simplified to 

In equation (22), the term A"(x) is the true second derivative and the rest 

of the expression is the error. Equation (22)may be rewritten as


$$In = A"(x) + A"(x)error 

where 


= -(x - %)A"'(x) + - -A " ( x ) ~ ~ ~ ~ ~  
h2 + 6(x - %)2 

AIv(x) + . . . 0(h3)
12 

The discretization error in the F and I functions may then be written as 

and 


In order to proceed with the discretization error analysis it is necessary 

to make some assumption regarding the shape or form of the A(x) curve. A 

polynomial representation of A(x) is used to illustrate the order of error 

of the numerical solution. Use of a 4th degree polynomial retains error terms 

of order h2 in equation (22)and eliminates terms of order h3 and higher. 
This assumption is considered adequate for the purposes of the error analysis.
The general polynomial can be written 

11 




f-
A(x) = 

ajxj 

j=o j! 

and the ith derivative is 


ajxj-i
A(i)(x) = 

(j - i)!
j=i 


For J = 4,the polynomial expression becomes 

and the third and fourth derivatives are 

A"' (x) = a4x + a3 (27) 

and 

Equations (27), (28),and (23)may be substituted into equation (24)to obtain 


r 

m 3 


Equation (29)may be evaluated at a station point by letting x = m h  



2 1 1/2]Fm,error k -II{3h1/2[ 3 m312 + f (m - n + -)2 


rl=l 

m 

+ a4h3/2[ $ m5I2 + 1 + 1 (n - $)(m - n + 1 1121) (30) 

I 2  
n=l 

and at a half-station point by letting x = (m + - h21) 

m 

(m + $?I2+ 1 (m - n + 1)
m + -:>error FJ f3h1I2[ n=l(" 

To evaluate the error expression for the I 
used in equation (25) to obtain 

function, equation (29)  may be 

m 


((m - $)h 5 x 5 (m + $)h) (32) 



m e n  I(x) is evaluated at a station point x = mh, equation (32 )  becomes 

r 

2m5/2 + 1 (m - n + -)k 2 h2 (-..[ m 
1 3/2]

%,error 31s 5 n=l 
2 

and at a half-station point, where x = (m + $)h, equation ( 3 2 )  becomes 

r r m 

L 

J 

If approximations for the sums of the series are introduced in equa
tions (3O), (Sl), (33), and (34) then, for m large, on an order of magnitude 
basis, the F and I error expressions are reduced to the following
expressions: 

14 




x - &12h2(Im +;) 24n (a3 - 2a4x) 
error 

EQuations (35) nd (37) show that the F and I function ., as numerically
evaluated at a station point using equations (15) and (20 ) ,  have discretization 
errors essentially of order h312 and h2, respectively. By reducing h, the 
station intervalwidth (and increasing N, the number of station points in a 
solution), the discretization error can be reduced but only  at the expense of 
increased computing time and accumulated error. Another method of reducing the 
discretization error is to use Richardson's extrapolation to extrapolate the 
computed values to vanishingly small values of h if the order of error of the 
solution is known. 

To use Richardson's extrapolation, the F or the I functions are eval
uated at common station points for two different values of h (hl and $). 
Then extrapolated values may be computed by 

Use of this extrapolation should give an improved approximation to the correct 
value provided that round-off and other accumulated errors are small and that 
the station intervals are sufficiently small so as to minimize the effect of the 
higher orders of h which have been neglected in the derivation of the error 
terms. The half-station error results (eqs. (36)  and (38))are of little inter
est with regard to extrapolation since it is usually difficult to obtain solu
tions at very many matching stations. It may be observed here that the 

A(x)check equation (eq. (ll)) also has a discretization error of order h2. 


STEPS IN NUMERICAL SOLUTION 

A possible procedure for obtaining numerical solutions for the sonic-boom 
equations may be as follows: 

(1)Determine the effective equivalent body area distribution including 
both the volume and lift effects following the methods of reference 2. 

L 




(2)Obtain A, values at the required station points selecting an interval 
spacing which will give the smallest desired value of h. Select multiples of 
the smallest interval spacing which will give common station points for larger 
values of h (at least two spacings hl and ?+ where = 2hl, for 
instance). 


(3) Compute numerical approximations of the second derivative A”(x) by 
using equatio- (3), (41,and ( 5 ) .  

(4)Check the resulting equivalent area distribution A(x) check by using 


equations (10)and (ll). 


(5) Compute the Fm and Im values at all required station points f o r  all 
desired station interval spacings by using equations (15) and (20). 

(6)At common station points for the various station interval spacings 

selected, apply the extrapolation formulas of equations (39) and (40)to the 

Fm and Im values, respectively, o r  plot the results against h3I2 and h2, 
respectively, and extrapolate graphically to h = 0. In the event that computed 
results are obtained which do not follow the order of error shown here, deter
mine the order of error hk by graphical means, if possible, and complete the 
extrapolation graphically o r  use the formula 

Qm,l”Jk - Qm,2h k1 
-
%, extrap +k - hik 

where Q is a quantity representing either the F or the I values. 


(7)Use methods such as those presented in references 8 o r  9 to compute the 
desired pressure fields. 

(8)If the maximum far-field overpressure is desired from equation (2), use 
graphical or  analytical interpolation to determine I(x)-. One simple analyt
ical interpolation scheme is to fit a parabola through the three adjacent larg
est positive computed values of &. If these three consecutive values are des
ignated 11, 12, and 13,then I(x)- is given approximately by 


In general, better results are obtained from equation (42)if it is applied to 
extrapolated results at the necessarily wider spacing rather than to the origi
nal computed results at the closest spacing. The computed values of I(X)=~ 
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cannot be extrapolated very well  since they will not necessarily be a t  common 
s ta t ion  points or  x values. 

NUMERICAL EXAMPLES 

Parabolic Bodies 

Two numerical examples f o r  a parabolic body are  shown. The first i s  f o r  a 
simple smooth body with a parabolic dis t r ibut ion of radii 

Rl(x) = 0.7725 - 4(x - 0.3)2] (43) 

The second is  f o r  a body similar t o  the first one but wlth a bump equivalent t o  
adding the  amount of cross-sectional area contained i n  a body with parabolic 
dis t r ibut ion of r ad i i  

Only normal or cross-sectional areas (corresponding t o  M = 1.0 cuts) were used 
for the equivalent body area dis t r ibut ion i n  the numerical examples. The 
result ing normal area dis t r ibut ions are fo r  the smooth parabolic body 

Al(x) = fiR?(x) 

and f o r  the parabolic body w i t h  bump 

(45) 

( 0  5 x 5 0.3)  

The enclosed volume of the parabolic body with bump i s  approximately 2 percent 
greater than the  volume of the smooth parabolic body. These bodies were chosen 
only f o r  i l l u s t r a t i v e  purposes and do not necessarily resemble any r e a l i s t i c  
configuration. It should be observed that the  smooth parabolic body area dis
tr ibut ion function (ea. (45)) i s  a 4th degree polynomial i n  x and therefore 
corresponds t o  w h a t  was assumed i n  the error  analysis. The resu l t s  of the 



error analysis (eqs. (35)to ( 3 8 ) )  are therefore most nearly applicable to the 
solution for this body. The solution for the parabolic body with blunp however 
will contain higher order terms. For the smooth parabolic body, the constants 
in equation (26)are: 

a. = 0.0 

a1 = 0.0 

a2 = 19.0962~ 

a4 = 229.1544~ 

The Acheck, Fm, and & values, computed with equations (U), (I?), 
and (20),are compared with the exact values in figure 1 for both bodies for an 
interval spacing of h = 0.1 and h = 0.05. It may be seen from figure 1 that 
increasing the number of station points from 10 to 20 improved the solution 
accuracy. A further illustration of the improvement in solution accuracy with 
number of station points (N = l/h) is shown in figure 2. Here, Fm and & 
are shown in an extrapolation against h3I2 and h2, respectively, at a body 
station point of x = 0.4 in figure 2(a) and at x = 0.8 in figure 2(b) for 
both bodies. All but the F function for the smooth parabolic body at x = 0.4 
show an orderly progression. In this one plot, the F scale is greatly 
expanded and even the N = 10 (h = 0.1) solution is quite accurate (error less 
than 1percent). Here it is possible that errors of order other than h3I2 or  
sources of error other than the discretization error are influencing the behav
ior of the solutions. 

Logarithmic plots of the absolute value of the error fractions 1 Fm,error 
~I Iexact 

Im,errorand I Iexact I, obtained by subtracting the exact values from the approximate 
computed values, are presented in figure 3 as a function of h for selected 
body station points. These data show, by the nearly constant slope of most of 
the lines, that the order of error is approximately as predicted by equa
tions (35) and (37). A few notable exceptions are for x = 0.3 and x = 0.3 
f o r  the parabolic body with bump, and for x = 1.0 for both bodies. The first 
two stations correspond to the points where the bump starts and ends, and 
although the first derivative of the area distribution is continuous here, the 
second derivative is not. The same is true at the base (x = 1.0)of both 
bodies. At such points, apparently, the order of error is not predictable. 
However, graphically at the bump discontinuities, the order of error seems to 

. "I 



approach h'I2 f o r  the F values and h3/2 f o r  the I values. Error frac
t ions f o r  I 

m +-2 
are  presented i n  f igure 4 f o r  data computed by using the half-

s ta t ion  formula of equation (21) and verify the b? order of error  i n  the half-
s ta t ion  error  expression of equation (%). 

Computed values of t he  I function a t  body s ta t ions of x = 0.32, 
x = 0.34, and x = 0.36 f o r  h intervals  of 0.01 and 0.02 are  shown i n  the 
following tab le  f o r  the smooth parabolic body: 

L, (smooth parabolic body) f o r  - 1h 
x = 0.32 

0.02 0.85643415 0.86271-865 0.86095690 
.01 .85781819 .86407731 .86228505 

I I 

These values were used i n  the extrapolation formula of equation (40) and the 
extrapolated resu l t s  a re  a l so  shown as follows: 

I f o r  'extrap 

x = 0.32 

0.87827954 

The value hx= 0.86483733 a t  xo = 0.3435236 was obtained by interpolation 
with equation (42) and the  values of IeXtrapgiven. T h i s  compares with an 

=exact value of Imax,exact0.86483647 a t  x = 0.3454915 with an error  i n  

I,, of about one par t  i n  a million. 

Prac t ica l  Airplane Shape 

Figure 5 shows a comparison of the F, and & functions computed by the 
central  differences method used i n  this report (c i rcular  symbols) and by the 
method of reference 2 (square symbols). The area dis t r ibut ion chosen was one 
f o r  a prac t ica l  airplane shape similar t o  the one presented i n  figure 2 of ref
erence 2. The comparison shows that the two methods, both of which involve 
integrals  containing the second derivative expl ic i t ly ,  predict  substantially 



the same results for both the F and I functions. In the comparison of 
Acheck, also in figure 3 ,  the square symbols correspond to the input values 
since a feature of the method of reference 2 is that, at the station points, 

the input area is recovered exactly when the second derivative is integrated

twice for the area. However, departures from the desired area distribution 

would occur in between the station points because of the oscillatory nature of 

the second derivatives in that method. 


The convergence of the solutions with decreasing interval spacing is shown 
in figwe 6 for body stations x = 0.4 and x = 0.8. Extrapolation of the 
I function against h2 appears quite regular but extrapolation of the 

F function against h3I2 apparently indicates that convergence is not obtained 
until the interval spacing is quite small (h = 0.01, h = 0.02). Convergence 
would not be expected until the interval spacing is sufficiently small so as to 
define the waviness o r  bwiness of the area distribution correctly. Probably 
a minimum of four stations within a given wave or  buurp would be required to give 
adequate definition and only solutions with this interval spacing and closer 
would be expected to show convergence in an extrapolation. It is therefore 
apparent that the extrapolation technique must be used with caution, and cannot 
be applied indiscriminately or without some prior knowledge of the nature of 
convergence of a solution with decreasing interval spacing. 

CONCLUDING RXMARKS 

An application of Richardson's extrapolation to the numerical evaluation 
of the sonic-boom integrals occurring in the theory of Whitham (Communications 
on Pure and Applied Mathematics, August 1952) has been considered. Quations 
have been developed for evaluating the sonic-boom integrals, using second deriv
atives which are obtained f r o m  the central difference formulas of finite differ
ence techniques. It has been shown by error analysis that these equations have 
an order of error proportional to the square of the solution point interval 
spacing for the far-field sonic-boom integral, and to the three-halves power of 
the interval spacing for the near-field sonic-boom integral. mragolation of 
the numerical results to zero interval spacing on the basis of the predicted 
order of error is demonstrated, and some numerical examples confirm the essen
tialvalidity of the procedure. Some of the numerical results however show 
that the extrapolation technique must be used with caution. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 6,1966,
126-16-03-04-23. 
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Figure 1.- Comparison of numerical values of Acheck, F,, and I, with exact values for the parabolic bodies. 
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Figure 2.- Extrapolation for F and I functions at body stations x = 0.4 and x = 0.8 for the parabolic bodies. 
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Figure 2.- Concluded. 
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Figure 3.- Error fractions for even station results as a function of h at selected body station points for the parabolic bodies. 
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Figure 4.- Error fractions for half-station results as a function Of h at selected body stations for the smooth parabolic body. 
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Figure 5.- Comparison Of numerical values of Acheck. F,, and I, for a practical airplane shape computed by the central difference method 

and by the method of reference 2 for h = 0.01. 
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